Cart (Loading....) | Create Account
Close category search window
 

Electron transport through two irreducibly-coupled Aharonov-Bohm rings with applications to nanostructure quantum computing circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cain, C. A. ; Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 301 W 16th St, Rolla, Missouri 65409, USA ; Wu, C. H.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3631782 

We investigated several classes of two coupled Aharonov-Bohm rings that share a finite center common path, where the phase of the electron wave function can be modulated by two distinct magnetic fluxes. The coupling is similar to two coupled atoms. The behavior of charge accumulation along the center common path or, equivalently, the bonding and anti-bonding of the two rings can be achieved as the two applied fluxes are varied. Thus, when three external terminals are connected to such coupled rings, the behavior of the electron transport is divided into several classes, depending on the number of atoms in each ring and the locations of the terminals. The results are presented here. The applicable electron wave computing circuits are discussed. In particular, a half-adder construction is shown here by employing the symmetric and anti-symmetric properties of the transmission of a given terminal when the sign of the flux is changed. The analogy of two coupled rings with respect to two spins allows one to make a further connection with traditional spintronics-based schemes.

Published in:

Journal of Applied Physics  (Volume:110 ,  Issue: 5 )

Date of Publication:

Sep 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.