By Topic

Personalized smart TV program recommender based on collaborative filtering and a novel similarity method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyeong-Joon Kwon ; Sch. of Inf. & Commun. Eng., Sungkyunkwan Univ., Suwon, South Korea ; Kwang-Seok Hong

The viewing set-based method has difficulties ensuring that a user will enjoy recommended programs, and the model-based collaborative filtering method contains system-side real-time recommendation problems because most recent ratings cannot be applied in the recommendations and it has increased calculating costs due to the training process. In this paper, we propose a personalized program recommender for smart TVs using memory-based collaborative filtering with a novel similarity method that is robust to cold-start conditions and faster than the often-used, existing similarity method. The proposed method can improve the recommendation performance of electronic program guides and recommender applications for smart TVs. We determined the prediction accuracy of the ratings under various conditions in order to evaluate the proposed method. As a result, we confirmed that the proposed method is effective for cold-start conditions.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 3 )