By Topic

Improved shortening algorithm for irregular QC-LDPC codes using known bits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yin Xu ; Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Bo Liu ; Liang Gong ; Bo Rong
more authors

Shortening is a technique to achieve rate and length adaptable low-density-parity-check (LDPC) codes. Other than the puncturing and extending techniques, shortening aims to remove certain information columns, i.e., the columns standing for the known information bits, from a given parity check matrix. In this paper, we first review the recently suggested largest-extrinsic-sum (LES) algorithm which is especially designed for quasic-cyclic (QC) LDPC codes, and then propose a method based on smallest-row-variance priority (SRVP). Moreover, we obtain both theoretical analysis and simulation results of the codes in 802.11n and 802.16e standards, which shows that: 1) the proposed SRVP algorithm always achieves better Eb/No threshold than the existing LES algorithm and generally, the shortened codes outperform the original codes; 2) severe performance degradation occurs when too many information bits are shortened for low rate codes. The proposed algorithm as well as the corresponding performance evaluations is instructive to practical applications.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 3 )