By Topic

Low-Complexity Reliability-Based Message-Passing Decoder Architectures for Non-Binary LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xinmiao Zhang ; Case Western Reserve University ; Fang Cai ; Shu Lin

Non-binary low-density parity-check (NB-LDPC) codes can achieve better error-correcting performance than their binary counterparts at the cost of higher decoding complexity when the codeword length is moderate. The recently developed iterative reliability-based majority-logic NB-LDPC decoding has better performance-complexity tradeoffs than previous algorithms. This paper first proposes enhancement schemes to the iterative hard reliability-based majority-logic decoding (IHRB-MLGD). Compared to the IHRB algorithm, our enhanced (E-)IHRB algorithm can achieve significant coding gain with small hardware overhead. Then low-complexity partial-parallel NB-LDPC decoder architectures are developed based on these two algorithms. Many existing NB-LDPC code construction methods lead to quasi-cyclic or cyclic codes. Both types of codes are considered in our design. Moreover, novel schemes are developed to keep a small proportion of messages in order to reduce the memory requirement without causing noticeable performance loss. In addition, a shift-message structure is proposed by using memories concatenated with variable node units to enable efficient partial-parallel decoding for cyclic NB-LDPC codes. Compared to previous designs based on the Min-max decoding algorithm, our proposed decoders have at least tens of times lower complexity with moderate coding gain loss.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 11 )