Cart (Loading....) | Create Account
Close category search window

Improving Spatial–Spectral Endmember Extraction in the Presence of Anomalous Ground Objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shaohui Mei ; Sch. of Electron. & Inf., Northwestern Polytech. Univ., Xi''an, China ; Mingyi He ; Yifan Zhang ; Zhiyong Wang
more authors

Endmember extraction (EE) has been widely utilized to extract spectrally unique and singular spectral signatures for spectral mixture analysis of hyperspectral images. Recently, spatial-spectral EE (SSEE) algorithms have been proposed to achieve superior performance over spectral EE (SEE) algorithms by taking both spectral similarity and spatial context into account. However, these algorithms tend to neglect anomalous endmembers that are also of interest. Therefore, in this paper, an improved SSEE (iSSEE) algorithm is proposed to address such limitation of conventional SSEE algorithms by accounting for both anomalous and normal endmembers. By developing simplex projection and simplex complementary projection, all the hyperspectral pixels are projected into a simplex determined by the normal endmembers extracted in conventional SSEE algorithms. As a result, anomalous endmembers are identified iteratively by utilizing the l2 norm to find the maximum simplex complementary projection. In order to determine how many anomalous endmembers are to be extracted, a novel Residual-be-Noise Probability-based algorithm is also proposed by elegantly utilizing the spatial-purity map generated in the previous SSEE step. Experimental results on both synthetic and real datasets demonstrate that simplex projection errors can be significantly reduced by identifying both anomalous and normal endmembers in the proposed iSSEE algorithm. It is also confirmed that the performance of the proposed iSSEE algorithm clearly outperforms that of SEE algorithms since both spatial context and spectral similarity are utilized.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.