Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Markov Chain CFAR Detection for Polarimetric Data Using Data Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chuhong Fei ; A.U.G. Signals Ltd., Toronto, ON, Canada ; Ting Liu ; Lampropoulos, G.A. ; Anastassopoulos, V.

This paper proposes a new Markov-chain-based constant false alarm rate (CFAR) detector for polarimetric data using low-level data fusion and high-level decision fusion. The Markov-chain-based CFAR detector extends traditional probability density function (pdf) based CFAR detection to first-order Markov chain model by considering both correlation between neighboring pixels and pdf information in CFAR detection. With the additional correlation information, the proposed approach results in advancing the performance of conventional CFAR detectors. Moreover, to take advantage of full polarizations of polarimetric data, various data fusion methods are considered to improve detection performance, including polarimetric transformation, principal component analysis, and decision fusion. Our experimental results confirm the superiority of the new Markov chain polarimetric CFAR detector over conventional pdf-based CFAR detectors.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 2 )