By Topic

Hurricane Wind Speed Measurements in Rainy Conditions Using the Airborne Hurricane Imaging Radiometer (HIRAD)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ruba A. Amarin ; University of Central Florida, Orlando, FL, USA ; W. Linwood Jones ; Salem Fawwaz El-Nimri ; James W. Johnson
more authors

This paper describes a realistic computer simulation of airborne hurricane surveillance using the recently developed microwave remote sensor, the hurricane imaging radiometer (HIRAD). An end-to-end simulation is described of HIRAD wind speed and rain rate measurements during two hurricanes while flying on a high-altitude aircraft. This simulation addresses the particular challenge which is accurate hurricane wind speed measurements in the presence of intense rain rates. The objective of this research is to develop baseline retrieval algorithms and provide a wind speed measurement accuracy assessment for future hurricane flights including the NASA GRIP hurricane field program that was conducted in summer of 2010. Examples of retrieved hurricane wind speed and rain rate images are presented, and comparisons of the retrieved parameters with two different numerical hurricane models data are made. Special emphasis is provided on the wind speed measurement error, and statistical results are presented over a broad range of wind and rain conditions over the full measurement swath (earth incidence angle).

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 1 )