Cart (Loading....) | Create Account
Close category search window
 

Subwavelength Substrate-Integrated Fabry-Pérot Cavity Antennas Using Artificial Magnetic Conductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Sun ; Dept. of Phys., Tongji Univ., Shanghai, China ; Zhi Ning Chen ; Yewen Zhang ; Hong Chen
more authors

This paper presents the high-gain low-profile subwavelength substrate-integrated Fabry-Pérot (FP) cavity antennas with artificial magnetic conductor (AMC) sheets. A partially reflective planar AMC sheet and a ground plane are used as the two reflectors of the FP-type resonant cavity for an ultra-thin planar design. The cavity is fully filled with dielectric substrate for further reduction of thickness of the antenna and easy integration. A microstrip patch antenna is embedded into the cavity as a feed. As design examples, the antennas are designed to operate at 10 GHz with a fixed overall thickness of λ0/9 (where λ0 is the operating wavelength in free space) and an aperture of 2λ0 × 2λ0. The losses caused by both dielectric and conductors are analyzed, which are critical for a fully dielectric substrate antenna design. The via-walls surrounding the radiating aperture are introduced to improve radiation patterns and gain by suppressing the surface waves, which are another critical loss for a thin fully dielectric substrate antenna design. Measured results show that such dielectric-integrated subwavelength cavity antennas feature the high gain of 12.5 dBi, low profile, easy integration into circuit board, and mechanical robustness, which makes them suitable for low-cost mass production.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.