By Topic

On Distributed Convex Optimization Under Inequality and Equality Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minghui Zhu ; Dept. of Mech. & Aerosp. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Martinez, S.

We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective functions, while the global constraint set is produced by the intersection of local constraint sets. In particular, we study two cases: one where the equality constraint is absent, and the other where the local constraint sets are identical. We devise two distributed primal-dual subgradient algorithms based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian and penalty functions. These algorithms can be implemented over networks with dynamically changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically agree on optimal solutions and optimal values of the optimization problem under the Slater's condition.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 1 )