By Topic

Unified System-Level Modeling of Intermittent Renewable Energy Sources and Energy Storage for Power System Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Heussen, K. ; Dept. of Electr. Technol., Tech. Univ. of Denmark, Lyngby, Denmark ; Koch, S. ; Ulbig, A. ; Andersson, G.

The system-level consideration of intermittent renewable energy sources (RES) and small-scale energy storage in power systems remains a challenge as either type is incompatible with traditional operation concepts. Noncontrollability and energy constraints are still considered contingent cases in market-based operation. The design of operation strategies for up to 100% RES power systems requires an explicit consideration of nondispatchable generation and storage capacities, as well as the evaluation of operational performance in terms of energy efficiency, reliability, environmental impact, and cost. By abstracting from technology-dependent and physical unit properties, the power nodes modeling framework presented here allows the representation of a technologically diverse unit portfolio with a unified approach, while establishing the feasibility of energy-storage consideration in power system operation. After introducing the modeling approach, a case study is presented for illustration.

Published in:

Systems Journal, IEEE  (Volume:6 ,  Issue: 1 )