By Topic

Onboard switching for ATM via satellite

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gilderson, J. ; Spar Space Syst., Montreal, Que., Canada ; Cherkaoui, J.

This article presents an architecture for onboard ATM switching. The constraints of the space environment and the associated delays (especially with geostationary satellites) create often conflicting requirements for the implementation of ATM via satellite. These requirements must be considered when designing onboard equipment. The article suggests that the use of MF-TDMA framing and of physical-layer scheduling as a preswitching stage allows for the use of standard switch fabrics onboard with additional fault tolerance and buffer mechanisms. The details of the scheduler and of the RF front end, including demodulation and demultiplexing, are presented as well as suitable switch fabrics and their performance/implementation impact. ATM is now widely considered the delivery medium for the broadband services of the future. This fact has also attracted the attention of the satellite community. Current satellite ATM trials have concentrated on trunking applications using available broadcast satellites. However, the US FCC filings for Ka band satellites, as well as Canadian W and European initiatives, have focused on a new generation of digital regenerative multibeam onboard processing satellites

Published in:

Communications Magazine, IEEE  (Volume:35 ,  Issue: 7 )