Cart (Loading....) | Create Account
Close category search window
 

A Monolithic Compliant Piezoelectric-Driven Microgripper: Design, Modeling, and Testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, D.H. ; Dept. of Optoelectron. Eng., Chongqing Univ., Chongqing, China ; Yang, Q. ; Dong, H.M.

In this paper, we report on the design, modeling, and experimental testing of a piezoelectric-driven microgripper making use of both an integrated gripping force sensor and an integrated tip displacement sensor. In the developed microgripper, a stack piezoelectric ceramic actuator is used to simultaneously obtain the tip displacement and the gripping force. A novel monolithic compliant mechanism is proposed to act as the microdisplacement transmission mechanism to obtain the large tip displacement and to provide the possibility of integrating both the gripping force sensor and the tip displacement sensor into the microgripper. The relationship between the gripping force, tip displacement, input force, and input displacement of the piezoelectric-driven microgripper and the dynamic model are established using the pseudorigid-body-model method. The characteristics of the developed microgripper are tested and the case of gripping an optical fiber is presented. The experimental results indicate that: 1) the theoretical model for the developed microgripper matched well with the measured results; 2) the integrated gripping force sensor and tip displacement sensor could accurately measure the gripping force and tip displacement; 3) the developed microgripper could achieve a displacement magnification of 16.0 × with respect to the stack piezoelectric ceramic actuator to realize the large tip displacement with high resolution but is also able to possess the parallel movement of its gripping jaws and the constant displacement magnification.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.