Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Cascade, Triangular, and Two-Way Source Coding With Degraded Side Information at the Second User

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeow-Khiang Chia ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Permuter, H.H. ; Weissman, T.

In this paper, we consider the cascade and triangular rate-distortion problems where the same side information is available at the source node and user 1, and the side information available at user 2 is a degraded version of the side information at the source node and user 1. We characterize the rate-distortion region for these problems. For the cascade setup, we show that, at user 1, decoding and rebinning the codeword sent by the source node for user 2 is optimum. We then extend our results to the two-way cascade and triangular setting, where the source node is interested in lossy reconstruction of the side information at user 2 via a rate limited link from user 2 to the source node. We characterize the rate-distortion regions for these settings. Complete explicit characterizations for all settings are given in the quadratic Gaussian case. We conclude with two further extensions: a triangular source coding problem with a helper, and an extension of our two-way cascade setting in the quadratic Gaussian case.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 1 )