By Topic

Low-Rank Matrix Approximation Using Point-Wise Operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amini, A. ; EE Dept., Sharif Univ. of Technol., Tehran, Iran ; Karbasi, A. ; Marvasti, F.

The problem of extracting low-dimensional structure from high-dimensional data arises in many applications such as machine learning, statistical pattern recognition, wireless sensor networks, and data compression. If the data is restricted to a lower dimensional subspace, then simple algorithms using linear projections can find the subspace and consequently estimate its dimensionality. However, if the data lies on a low-dimensional but nonlinear space (e.g., manifolds), then its structure may be highly nonlinear and, hence, linear methods are doomed to fail. In this paper, we introduce a new technique for dimensionality reduction based on point-wise operators. More precisely, let be a matrix of rank and assume that the matrix is generated by taking the elements of to some real power . In this paper, we show that based on the values of the data matrix , one can estimate the value and, therefore, the underlying low-rank matrix ; i.e., we are reducing the dimensionality of by using point-wise operators. Moreover, the estimation algorithm does not need to know the rank of . We also provide bounds on the quality of the approximation and validate the stability of the proposed algorithm with simulations in noisy environments.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 1 )