By Topic

Efficient On-Chip Task Scheduler and Allocator for Reconfigurable Operating Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chuan Hong ; Sch. of Eng., Univ. of Edinburgh, Edinburgh, UK ; Benkrid, K. ; Iturbe, X. ; Ebrahim, A.
more authors

This letter presents efficient and modular task scheduler and allocator support for dynamically and partially reconfigurable electronic systems. This enables hardware tasks to be preempted and arbitrarily placed at an optimal position on the chip on-the-fly. In particular, we present a novel fault-tolerant allocating algorithm called “best-fit empty area compact (BF-EAC),” and its on-chip implementation on a Xilinx Virtex-4 field-programmable gate array (FPGA), which circumvents emerging faults while maintaining more compact empty areas for emerging tasks. We also present an implementation of the early deadline first (EDF) scheduling heuristic used to optimize the chronological order of execution of hardware tasks to meet real time constraints. Put together, the placement and scheduling architecture efficiently exploits chip resources with a μs-grade computing speed and a lightweight footprint (less than 500 slices).

Published in:

Embedded Systems Letters, IEEE  (Volume:3 ,  Issue: 3 )