By Topic

Text classification using word sequence kernel methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Trindade, L.A. ; Fac. of Comput. & Eng., Univ. of Ulster, Newtownabbey, UK ; Hui Wang ; Blackburn, W. ; Rooney, N.

This paper presents a comparison study of two sequence kernels for text classification, namely, all common subsequences and sequence kernel. We consider some variations of the two kernels - kernels based on individual features, linear combination of individual kernels and kernels with a factored representation of features - and evaluate them in text classification by employing them as similarity functions in a support vector machine. A sentence is represented as a sequence of words along with their lemma and part-of-speech tags. Experiments show that sequence kernel has a clear advantage over all common subsequences. Since the main difference between the two kernels lies in the fact that the frequency of words (objects) is considered in sequence kernel but not in all common subsequences, we conclude that the frequency of words is an important factor in the successful application of kernels to text classification.

Published in:

Machine Learning and Cybernetics (ICMLC), 2011 International Conference on  (Volume:4 )

Date of Conference:

10-13 July 2011