By Topic

Bare bone particle swarm optimization with integration of global and local learning strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chang-Huang Chen ; Dept. of Electr. Eng., Tungnan Univ., Taipei, Taiwan

Bare bone particle swarm optimization (BPSO) possesses self-adapting property and uses fewer parameters resulted in simple implementation and free parameter-tuning. Inevitably, it also tends to converges prematurely, especially for problems with multiple extremes. In this paper, a new method combining global and local learning strategy used in traditional particle swarm optimization (PSO) is devised to improve the performance of the bare bone particle swarm optimization. According to the integration, two variants are proposed. Method is simple and the results are fruitful. Tested on a suite of benchmark functions, unimodal and multimodal functions, justifies the feasibility of the strategy. Both solution quality and convergent speed are better than traditional bare bone particle swarm optimizer.

Published in:

Machine Learning and Cybernetics (ICMLC), 2011 International Conference on  (Volume:2 )

Date of Conference:

10-13 July 2011