By Topic

Activity-Based Estimation of Human Trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Grzonka, S. ; Univ. of Freiburg, Freiburg, Germany ; Karwath, A. ; Dijoux, F. ; Burgard, W.

We present a novel approach to incrementally determine the trajectory of a person in 3-D based on its motions and activities in real time. In our algorithm, we estimate the motions and activities of the user given the data that are obtained from a motion capture suit equipped with several inertial measurement units. These activities include walking up and down staircases, as well as opening and closing doors. We interpret the first two types of activities as motion constraints and door-handling events as landmark detections in a graph-based simultaneous localization and mapping (SLAM) framework. Since we cannot distinguish between individual doors, we employ a multihypothesis tracking approach on top of the SLAM procedure to deal with the high data-association uncertainty. As a result, we are able to accurately and robustly recover the trajectory of the person. Additionally, we present an algorithm to build approximate geometrical and topological maps based on the estimated trajectory and detected activities. We evaluate our approach in practical experiments that are carried out with different subjects and in various environments.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 1 )