By Topic

Improved Image Recovery From Compressed Data Contaminated With Impulsive Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duc-Son Pham ; Inst. for Multisensor & Content Anal., Curtin Univ., Perth, WA, Australia ; Venkatesh, S.

Compressed sensing (CS) is a new information sampling theory for acquiring sparse or compressible data with much fewer measurements than those otherwise required by the Nyquist/Shannon counterpart. This is particularly important for some imaging applications such as magnetic resonance imaging or in astronomy. However, in the existing CS formulation, the use of the l2 norm on the residuals is not particularly efficient when the noise is impulsive. This could lead to an increase in the upper bound of the recovery error. To address this problem, we consider a robust formulation for CS to suppress outliers in the residuals. We propose an iterative algorithm for solving the robust CS problem that exploits the power of existing CS solvers. We also show that the upper bound on the recovery error in the case of non-Gaussian noise is reduced and then demonstrate the efficacy of the method through numerical studies.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )