Cart (Loading....) | Create Account
Close category search window
 

A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chengbo Li ; Dept. of Comput. & Appl. Math., Rice Univ., Houston, TX, USA ; Ting Sun ; Kelly, K.F. ; Yin Zhang

Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and input/output throughputs, particularly when real-time processing is desired. In this paper, a proof-of-concept study is conducted on compressive sensing (CS) and unmixing for hyperspectral imaging. Specifically, we investigate a low-complexity scheme for hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral data are acquired directly by a device similar to the single-pixel camera based on the principle of CS. To decode the compressed data, we propose a numerical procedure to compute directly the unmixed abundance fractions of given end members, completely bypassing high-complexity tasks involving the hyperspectral data cube itself. The reconstruction model is to minimize the total variation of the abundance fractions subject to a preprocessed fidelity equation with a significantly reduced size and other side constraints. An augmented Lagrangian-type algorithm is developed to solve this model. We conduct extensive numerical experiments to demonstrate the feasibility and efficiency of the proposed approach, using both synthetic data and hardware-measured data. Experimental and computational evidences obtained from this paper indicate that the proposed scheme has a high potential in real-world applications.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.