By Topic

TDDB Monitoring and Compensation Circuit Design for Deeply Scaled CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haiqing Nan ; Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA ; Kyuwon Choi

In this paper, a time-dependent dielectric breakdown (TDDB) compensation method with two TDDB monitoring circuits for reliable designs is proposed in 32-nm CMOS technology. To the best of our knowledge, there is no TDDB compensation method or TDDB monitoring circuits proposed before. The proposed TDDB monitoring circuits are referred to as soft breakdown (SBD) monitoring circuit and hard breakdown (HBD) monitoring circuit, which generate a fixed output pattern when severe SBD or HBD occurs. Based on the output of the monitoring circuits, the TDDB compensation method is proposed to completely overcome severe performance degradation and functionality failure due to SBD and HBD. The effectiveness and design costs of the proposed designs are evaluated using ISCAS'85 benchmark circuits.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:13 ,  Issue: 1 )