Cart (Loading....) | Create Account
Close category search window
 

Distributed multi-agent microgrids: a decentralized approach to resilient power system self-healing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Colson, C.M. ; Dept. of Electr. & Comput. Eng., Montana State Univ., Bozeman, MT, USA ; Nehrir, M.H. ; Gunderson, R.W.

The predominance of recent self-healing power system research has been directed towards centralized command and control functions. In this paper, a decentralized multi-agent control method for distributed microgrids is introduced. Given the complexity of a large power system spanning hundreds of miles and comprised of numerous microgrids, it is potentially unrealistic to expect that centralizing total system control functions is feasible. Therefore, the authors are particularly interested in dispersing decision-making by utilizing smart microgrid control agents that cooperate during normal and emergency situations. The combination of microgrids and agent-based control can improve power system resiliency. The method described herein lays the groundwork for a comprehensive microgrid control architecture that strikes a balance between the multiple intra-microgrid objectives defined by local operator and the situational demands of the microgrid collective as part of the power system. In this way, both self-interest and cooperation can arise, allowing microgrid agents to successfully transition from normal operations to an emergency condition and back again when conditions have resolved, independent of a central supervisor. The decentralized multi-agent methods for microgrids explored in this paper help to support what may be an enabling technology of future smart grids.

Published in:

Resilient Control Systems (ISRCS), 2011 4th International Symposium on

Date of Conference:

9-11 Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.