By Topic

Autonomous Adaptive and Active Tuning Up of the Dissolved Oxygen Setpoint in a Wastewater Treatment Plant Using Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hernandez-del-Olmo, F. ; Dept. of Artificial Intell., Univ. Nac. de Educ. a Distancia, Madrid, Spain ; Gaudioso, E. ; Nevado, A.

The aim of this paper is to face one of the main problems in the control of wastewater treatment plants (WWTPs). It appears that the control system does not respond as it should because of changes on influent load or flow. In that case, it is required that a plant operator tunes up the parameters of the plant. The dissolved oxygen setpoint is one of those parameters. In this paper, we present a model-free reinforcement learning agent that autonomously learns to actively tune up the oxygen setpoint by itself. By active, we mean continuous, minute after minute, tuning up. By autonomous and adaptive, we mean that the agent learns just by itself from its direct interaction with the WWTP. This agent has been tested with data from the well-known public benchamark simulation model no. 1, and the results that are obtained allow us to conclude that it is possible to build agents that actively and autonomously adapt to each new scenario to control a WWTP.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:42 ,  Issue: 5 )