By Topic

Ionic Channel Current Burst Analysis by a Machine Learning Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rauch, G. ; Inst. of Biophys., Nat. Res. Council, Genoa, Italy ; Bertolini, S. ; Sacile, R. ; Giacomini, M.
more authors

A new method to analyze single ionic channel current conduction is presented. It is based on an automatic classification by K-means algorithm and on the concept of information entropy. This method is used to study the conductance of multistate ion current jumps induced by tetanus toxin in planar lipid bilayers. A comparison is presented with the widely used Gaussian best fit approach, whose main drawback is the fact that it is based on the manual choice of the base line and of meaningful fragments of current signal. On the contrary, the proposed method is able to automatically process a great amount of information and to remove spurious transitions and multichannels. The number of levels and their amplitudes do not have to be known a priori. In this way the presented method is able to produce a reliable evaluation of the conductance levels and their characteristic parameters in a short time.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:10 ,  Issue: 3 )