By Topic

Image Registration Under Illumination Variations Using Region-Based Confidence Weighted M -Estimators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fouad, Mohamed M. ; Dept. of Co. Eng., Mil. Tech. Coll., Cairo, Egypt ; Dansereau, R.M. ; Whitehead, A.D.

We present an image registration model for image sets with arbitrarily shaped local illumination variations between images. Any nongeometric variations tend to degrade the geometric registration precision and impact subsequent processing. Traditional image registration approaches do not typically account for changes and movement of light sources, which result in interimage illumination differences with arbitrary shape. In addition, these approaches typically use a least-square estimator that is sensitive to outliers, where interimage illumination variations are often large enough to act as outliers. In this paper, we propose an image registration approach that compensates for arbitrarily shaped interimage illumination variations, which are processed using robust M-estimators tuned to that region. Each M-estimator for each illumination region has a distinct cost function by which small and large interimage residuals are unevenly penalized. Since the segmentation of the interimage illumination variations may not be perfect, a segmentation confidence weighting is also imposed to reduce the negative effect of mis-segmentation around illumination region boundaries. The proposed approach is cast in an iterative coarse-to-fine framework, which allows a convergence rate similar to competing intensity-based image registration approaches. The overall proposed approach is presented in a general framework, but experimental results use the bisquare M-estimator with region segmentation confidence weighting. A nearly tenfold improvement in subpixel registration precision is seen with the proposed technique when convergence is attained, as compared with competing techniques using both simulated and real data sets with interimage illumination variations.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 3 )