Cart (Loading....) | Create Account
Close category search window

Differentiation Between Normal and Cancerous Cells at the Single Cell Level Using 3-D Electrode Electrical Impedance Spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Giseok Kang ; Grad. Program of Med. Syst. Eng. (GMSE), Gwangju Inst. of Sci. & Technol. (GIST), Gwangju, South Korea ; Yoo, Sung Keun ; Hyoung-Ihl Kim ; Jong-Hyun Lee

A novel microdevice for electrical impedance spectroscopy is presented to differentiate between normal and cancerous cells at the single cell level with a high sensitivity. The device utilizes a microfluidic tunnel structure, whose height is smaller than the cell diameters, to squeeze the target cells. Thus, the tight contact between the cells and electrodes allows the device to measure the intrinsic electrical properties of the cells with a higher sensitivity than through noncontact methods. Three-dimensional interdigitated electrodes (3-D IDE) are also employed to confine most of the electric field into the cell membrane, which contains the meaningful electrical properties. Consequently, the variance of the measured values could be reduced because the position of target cells is almost the same in every cell assay. The device well distinguishes normal human breast cells (MCF-10A) from early-stage human breast cancer cells (MCF-7) by means of electrical impedances at 500 kHz; the average differences of the real part and phase angle between the target cells are 44.4 and 1.41 , respectively. The proposed device also shows a high repeatability for the deionized (DI) water test conducted before and after each cell assay; the variances of the real part and phase angle of electrical impedance at 500 kHz are as small as 9.07 and 0.27 , respectively.

Published in:

Sensors Journal, IEEE  (Volume:12 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.