By Topic

State-of-the-art in distributed privacy preserving data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liu Ying-hua ; Sch. of Inf. Eng., Univ. of Sci. & Technol. Beijing, Beijing, China ; Yang Bing-ru ; Cao Dan-yang ; Ma Nan

Privacy preserving data mining has become an important research problem. The chief research is how to mine the potential knowledge and not to reveal the sensitive data. In reality, large amounts of data are stored in distributed sites, so the DPPDM (Distributed Privacy Preserving Data Mining) is very important. This paper gave a survey on the DPPDM. Based on different underlying technologies, there are three kinds of techniques: perturbation, secure multi-party computation and restricted query. It provides a detailed description of the research in this area, compares the advantages and disadvantages of each method, foucs on the hot topic in this field, points out the future research directions.

Published in:

Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on

Date of Conference:

27-29 May 2011