Cart (Loading....) | Create Account
Close category search window

Scalable hardware priority queue architectures for high-speed packet switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moon, S.-W. ; Real-Time Comput. Lab., Michigan Univ., Ann Arbor, MI, USA ; Shin, K.G. ; Rexford, J.

In packet-switched networks, queueing of packets at the switches can result when multiple connections share the same physical link. To accommodate a large number of connections, a switch can employ link-scheduling algorithms to prioritize the transmission of the queued packets. Due to the high-speed links and small packet sizes, a hardware solution is needed for the priority queue in order to make the link schedulers effective. But for good performance, the switch should also support a large number of priority levels (P) and be able to buffer a large number of packets (N). So a hardware priority queue design must be both fast and scalable (with respect to N and P) in order to be implemented effectively. In this paper we first compare four existing hardware priority queue architectures, and identify scalability limitations on implementing these existing architectures for large N and P. Based on our findings, we propose two new priority queue architectures, and evaluate them using simulation results from Verilog HDL and Epoch implementations

Published in:

Real-Time Technology and Applications Symposium, 1997. Proceedings., Third IEEE

Date of Conference:

9-11 Jun 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.