By Topic

LACIO: A New Collective I/O Strategy for Parallel I/O Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Chen ; Dept. of Comput. Sci., Texas Tech Univ., Lubbock, TX, USA ; Xian-He Sun ; Thakur, R. ; Roth, P.C.
more authors

Parallel applications benefit considerably from the rapid advance of processor architectures and the available massive computational capability, but their performance suffers from large latency of I/O accesses. The poor I/O performance has been attributed as a critical cause of the low sustained performance of parallel systems. Collective I/O is widely considered a critical solution that exploits the correlation among I/O accesses from multiple processes of a parallel application and optimizes the I/O performance. However, the conventional collective I/O strategy makes the optimization decision based on the logical file layout to avoid multiple file system calls and does not take the physical data layout into consideration. On the other hand, the physical data layout in fact decides the actual I/O access locality and concurrency. In this study, we propose a new collective I/O strategy that is aware of the underlying physical data layout. We confirm that the new Layout-Aware Collective I/O (LACIO) improves the performance of current parallel I/O systems effectively with the help of noncontiguous file system calls. It holds promise in improving the I/O performance for parallel systems.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International

Date of Conference:

16-20 May 2011