By Topic

Reconciling Sampling and Direct Instrumentation for Unintrusive Call-Path Profiling of MPI Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Szebenyi, Z. ; Julich Supercomput. Centre, Forschungszentrum Julich, Julich, Germany ; Gamblin, T. ; Schulz, M. ; de Supinski, B.R.
more authors

We can profile the performance behavior of parallel programs at the level of individual call paths through sampling or direct instrumentation. While we can easily control measurement dilation by adjusting the sampling frequency, the statistical nature of sampling and the difficulty of accessing the parameters of sampled events make it unsuitable for obtaining certain communication metrics, such as the size of message payloads. Alternatively, direct instrumentation, which is preferable for capturing message-passing events, can excessively dilate measurements, particularly for C++ programs, which often have many short but frequently called class member functions. Thus, we combine these techniques in a unified framework that exploits the strengths of each approach while avoiding their weaknesses: We use direct instrumentation to intercept MPI routines while we record the execution of the remaining code through low-overhead sampling. One of the main technical hurdles mastered was the inexpensive and portable determination of call-path information during the invocation of MPI routines. We show that the overhead of our implementation is sufficiently low to support substantial performance improvement of a C++ fluid-dynamics code.

Published in:

Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE International

Date of Conference:

16-20 May 2011