Cart (Loading....) | Create Account
Close category search window
 

A Bidirectional Acceleration Switch Incorporating Magnetic-Fields-Based Tristable Mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jian Zhao ; Fac. of Vehicle Eng. & Mech., Dalian Univ. of Technol., Dalian, China ; Renjing Gao ; Yintang Yang ; Yu Huang
more authors

In order to fulfill the requirements of low energy consumption and two sensing directions, a novel bidirectional acceleration switch is proposed by utilizing the magnetic-fields-based tristable mechanism that can maintain the three stable states without input power and with high position accuracy and repeatability. The bidirectional acceleration switch mainly consists of an inertial mass supported by two parallel elastic beams, two metal contact points, and four permanent magnets with one imbedded in the inertial mass and the other three fixed in the case along the vertical direction. Based on the magnetic charge model, the nonlinear magnetic force is analyzed, and then, a static design model of the bidirectional switch is established by considering the elastic force, the magnetic force, the contact force, and the inertial force. To validate the feasibility of the design method, a miniature sample of the switch is fabricated. The results of the centrifugal experiment show that the threshold accelerations in two directions are 53.0 and -52.0 g, respectively, which are close to the design values of 55.0 and -50.0 g, correspondingly. In addition, the threshold values can be adjusted by changing the relative distances among the four magnets.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.