Cart (Loading....) | Create Account
Close category search window
 

λτ-space representation of images and generalized edge detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gokmen, M. ; Fac. of Electr. & Electron., Istanbul Tech. Univ., Turkey ; Jain, A.K.

An image and surface representation based on regularization theory is introduced in this paper. This representation is based on a hybrid model derived from the physical membrane and plate models. The representation, called the λτ-representation, has two dimensions; one dimension represents smoothness or scale while the other represents the continuity of the image or surface. It contains images/surfaces sampled both in scale space and the weighted Sobolev space of continuous functions. Thus, this new representation can be viewed as an extension of the well-known scale space representation. We have experimentally shown that the proposed hybrid model results in improved results compared to the two extreme constituent models, i.e., the membrane and the plate models. Based on this hybrid model, a generalized edge detector (GED) which encompasses most of the well-known edge detectors under a common framework is developed. The existing edge detectors can be obtained from the generalized edge detector by simply specifying the values of two parameters, one of which controls the shape of the filter (τ) and the other controls the scale of the filter (λ). By sweeping the values of these two parameters continuously, one can generate an edge representation in the λτ space, which is very useful for developing a goal-directed edge detection scheme for a specific task. The proposed representation and the edge detector have been evaluated qualitatively and quantitatively on several different types of image data such as intensity, range, and stereo images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 6 )

Date of Publication:

Jun 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.