Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Comparative Study of Derivative Free Optimization Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nam Pham ; Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA ; Malinowski, A. ; Bartczak, T.

Derivative free optimization algorithms are often used when it is difficult to find function derivatives, or if finding such derivatives are time consuming. The Nelder Mead's simplex method is one of the most popular derivative free optimization algorithms in the fields of engineering, statistics, and sciences. This algorithm is favored and widely used because of its fast convergence and simplicity. The simplex method converges really well with small scale problems of some variables. However, it does not have much success with large-scale problems of multiple variables. This factor has reduced its popularity in optimization sciences significantly. Two solutions of quasi-gradients are introduced to improve it in terms of the convergence rate and the convergence speed. The improved algorithm with higher success rate and faster convergence which still maintains the simplicity is the key feature of this paper. This algorithm will be compared on several benchmark functions with other popular optimization algorithms such as the genetic algorithm, the differential evolution algorithm, the particle swarm algorithm, and the original simplex method. Then, the comparing results will be reported and discussed.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:7 ,  Issue: 4 )