Cart (Loading....) | Create Account
Close category search window

Feature Selection for Monotonic Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Qinghua Hu ; Harbin Inst. of Technol., Harbin, China ; Weiwei Pan ; Zhang, D. ; Zhang, D.
more authors

Monotonic classification is a kind of special task in machine learning and pattern recognition. Monotonicity constraints between features and decision should be taken into account in these tasks. However, most existing techniques are not able to discover and represent the ordinal structures in monotonic datasets. Thus, they are inapplicable to monotonic classification. Feature selection has been proven effective in improving classification performance and avoiding overfitting. To the best of our knowledge, no technique has been specially designed to select features in monotonic classification until now. In this paper, we introduce a function, which is called rank mutual information, to evaluate monotonic consistency between features and decision in monotonic tasks. This function combines the advantages of dominance rough sets in reflecting ordinal structures and mutual information in terms of robustness. Then, rank mutual information is integrated with the search strategy of min-redundancy and max-relevance to compute optimal subsets of features. A collection of numerical experiments are given to show the effectiveness of the proposed technique.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:20 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.