Cart (Loading....) | Create Account
Close category search window
 

Robust Control for Mobility and Wireless Communication in Cyber–Physical Systems With Application to Robot Teams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fink, J. ; GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA ; Ribeiro, A. ; Kumar, V.

In this paper, a system architecture to provide end-to-end network connectivity for autonomous teams of robots is discussed. The core of the proposed system is a cyber-physical controller whose goal is to ensure network connectivity as robots move to accomplish their assigned tasks. Due to channel quality uncertainties inherent to wireless propagation, we adopt a stochastic model where achievable rates are modeled as random variables. The cyber component of the controller determines routing variables that maximize the probability of having a connected network for given positions. The physical component determines feasible robot trajectories that are restricted to safe configurations which ensure these probabilities stay above a minimum reliability level. Local trajectory planning algorithms are proposed for simple environments and leveraged to obtain global planning algorithms to handle complex surroundings. The resulting integrated controllers are robust in that end-to-end communication survives with high probability even if individual point-to-point links are likely to fail with significant probability. Experiments demonstrate that the global planning algorithm succeeds in navigating a complex environment while ensuring that end-to-end communication rates meet or exceed prescribed values within a target failure tolerance.

Published in:

Proceedings of the IEEE  (Volume:100 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.