By Topic

A Cognitive-based scheme for user reliability and expertise assessment in Q&A social networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pelechrinis, K. ; Univ. of Pittsburgh, Pittsburgh, PA, USA ; Zadorozhny, V. ; Oleshchuk, V.

Q&A social media has gained a great deal of attention during recent years. People rely on these sites to obtain information due to the number of advantages they offer as compared to conventional sources of knowledge (e.g., asynchronous and convenient access). However, for the same question one may find highly contradictory answers, causing ambiguity with respect to the correct information. This can be attributed to the presence of unreliable and/or non-expert users. In this work, we propose a novel approach for estimating the reliability and expertise of a user based on human cognitive traits. Every user can individually estimate these values based on local pairwise interactions. We examine the convergence performance of our algorithm and we find that it can accurately assess the reliability and the expertise of a user and can successfully react to the latter's behavior change.

Published in:

Information Reuse and Integration (IRI), 2011 IEEE International Conference on

Date of Conference:

3-5 Aug. 2011