Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Comparison of Bio-inspired Algorithms for Peer Selection in Services Composition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Shen ; Fac. of Inf., Univ. of Wollongong, Wollongong, NSW, Australia ; Beydoun, G. ; Shuai Yuan ; Low, G.

One of the challenges for the P2P-based service composition process is how to effectively discover and select the most appropriate peers to execute the service applications when considering multiple properties of the requested services. Different ontology-based e-service profiles have been proposed to facilitate handling multiple properties and to enhance the service oriented process in order to achieve the total or partial automation of service discovery, selection and composition. This paper investigates how the ACO (Ant Colony Optimisation) algorithm and the GA (Genetic Algorithm) may facilitate P2P-based (Peer-to-Peer) service selection with multiple service properties. The performance of both algorithms is evaluated and compared statistically using a pooled t-test for 30 randomly generated composition scenarios. Our experimental results show that both algorithms can improve the quality of service composition, while showing that the ACO approach is the more effective.

Published in:

Services Computing (SCC), 2011 IEEE International Conference on

Date of Conference:

4-9 July 2011