By Topic

Efficient Feature Detection and Effective Post-Verification for Large Scale Near-Duplicate Image Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hongtao Xie ; Department of Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China ; Ke Gao ; Yongdong Zhang ; Sheng Tang
more authors

State-of-the-art near-duplicate image search systems mostly build on the bag-of-local features (BOF) representation. While favorable for simplicity and scalability, these systems have three shortcomings: 1) high time complexity of the local feature detection; 2) discriminability reduction of local descriptors due to BOF quantization; and 3) neglect of the geometric relationships among local features after BOF representation. To overcome these shortcomings, we propose a novel framework by using graphics processing units (GPU). The main contributions of our method are: 1) a new fast local feature detector coined Harris-Hessian (H-H) is designed according to the characteristics of GPU to accelerate the local feature detection; 2) the spatial information around each local feature is incorporated to improve its discriminability, supplying semi-local spatial coherent verification (LSC); and 3) a new pairwise weak geometric consistency constraint (P-WGC) algorithm is proposed to refine the search result. Additionally, part of the system is implemented on GPU to improve efficiency. Experiments conducted on reference datasets and a dataset of one million images demonstrate the effectiveness and efficiency of H-H, LSC, and P-WGC.

Published in:

IEEE Transactions on Multimedia  (Volume:13 ,  Issue: 6 )