By Topic

Dynamics of Type-3 Wind Turbine Generator Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hiskens, I.A. ; Univ. of Michigan, Ann Arbor, MI, USA

The influence of wind turbine generators (WTGs) on power system dynamic performance is becoming increasingly important as wind generation grows. The dynamic behavior of WTGs should therefore be thoroughly understood. The paper analyzes dynamic models of type-3 WTGs, and in particular the WECC generic model. The behavior of such models is governed by interactions between the continuous dynamics of state variables, and discrete events associated with limits. It is shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis is proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It is shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 1 )