Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A 25 Gb/s 65-nm CMOS Low-Power Laser Diode Driver With Mutually Coupled Peaking Inductors for Optical Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chujo, N. ; Production Eng. Res. Lab., Hitachi Ltd., Yokohama, Japan ; Takai, T. ; Sugawara, T. ; Matsuoka, Y.
more authors

A 25 Gb/s laser diode (LD) driver has been developed on the basis of standard 65 nm CMOS technology for optical interconnects. The LD driver consists of a main driver capable of providing an average current of 30 mA and a predriver providing a gain of 20 dB. The main driver uses mutually coupled inductors to adjust the inductive peaking to improve eye patterns under various packaging conditions. The predriver uses CMOS active feedback to achieve a wide bandwidth and high gain, despite its small size and low power consumption. The fabricated circuit achieves data rates of 25 Gb/s, consumes 156 mW (6.3 mW/Gb/s) and occupies an area of 0.011 mm2 .

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 9 )