By Topic

20 \mu A to 100 mA DC–DC Converter With 2.8-4.2 V Battery Supply for Portable Applications in 45 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Saurav Bandyopadhyay ; Massachusetts Institute of Technology, Cambridge, MA, USA ; Yogesh K. Ramadass ; Anantha P. Chandrakasan

A DC-DC buck converter capable of handling loads from 20 μA to 100 mA and operating off a 2.8-4.2 V battery is implemented in a 45 nm CMOS process. In order to handle high battery voltages in this deeply scaled technology, multiple transistors are stacked in the power train. Switched-Capacitor DC-DC converters are used for internal rail generation for stacking and supplies for control circuits. An I-C DAC pulse width modulator with sleep mode control is proposed which is both area and power-efficient as compared with previously published pulse width modulator schemes. Both pulse frequency modulation (PFM) and pulse width modulation (PWM) modes of control are employed for the wide load range. The converter achieves a peak efficiency of 75% at 20 μA, 87.4% at 12 mA in PFM, and 87.2% at 53 mA in PWM.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:46 ,  Issue: 12 )