System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Vector approach for self-excitation and control of induction machine in stand-alone wind power generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hazra, S. ; TVS Motor Co. Ltd., Harita, India ; Sensarma, P.

This study presents a detailed investigation on self-excitation of a squirrel-cage induction generator (SCIG) used in a wind energy conversion system. Air-gap flux of the SCIG is gradually built up through controlled current injection from a voltage source converter (VSC), connected directly across its stator terminals. Dc voltage of the VSC is ramped from a small initial value, which is the rectified output of the small terminal voltage developed because of remanent magnetism. Increase in air-gap flux increases generator terminal voltage and output power which further increases the dc bus voltage. The field-oriented control method is appropriately applied both for control of voltage build-up as well as dynamic transients. The critical factors deciding this collaborative excitation are analysed and sufficient conditions are derived analytically. System modelling and analytical results are validated through numerical simulation and verified on a 2.2 kW laboratory prototype.

Published in:

Renewable Power Generation, IET  (Volume:5 ,  Issue: 5 )