By Topic

Performance Analysis of Long-Running Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szebenyi, Z. ; Julich Supercomput. Centre, Forschungszentrum Julich, Julich, Germany ; Wolf, F. ; Wylie, B.J.N.

With the growing complexity of supercomputing applications and systems, it is important to constantly develop existing performance measurement and analysis tools to provide new insights into application performance characteristics and thereby help scientists and engineers utilize computing resources more efficiently. We present the various new techniques developed, implemented and integrated into the Scalasca toolset specifically to enhance performance analysis of long-running applications. The first is a hybrid measurement system seamlessly integrating sampled and event-based measurements capable of low-overhead, highly detailed measurements and therefore particularly convenient for initial performance analyses. Then we apply iteration profiling to scientific codes, and present an algorithm for reducing the memory and space requirements of the collected data using iteration profile clustering. Finally, we evaluate the complete integration of all these techniques in a unified measurement system.

Published in:

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on

Date of Conference:

16-20 May 2011