Cart (Loading....) | Create Account
Close category search window
 

Computing the Tree of Life: Leveraging the Power of Desktop and Service Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bazinet, A.L. ; Center for Bioinf. & Comput. Biol., Univ. of Maryland, College Park, MD, USA ; Cummings, M.P.

The trend in life sciences research, particularly in molecular evolutionary systematics, is toward larger data sets and ever-more detailed evolutionary models, which can generate substantial computational loads. Over the past several years we have developed a grid computing system aimed at providing researchers the computational power needed to complete such analyses in a timely manner. Our grid system, known as The Lattice Project, was the first to combine two models of grid computing - the service model, which mainly federates large institutional HPC resources, and the desktop model, which harnesses the power of PCs volunteered by the general public. Recently we have developed a "science portal" style web interface that makes it easier than ever for phylogenetic analyses to be completed using GARLI, a popular program that uses a maximum likelihood method to infer the evolutionary history of organisms on the basis of genetic sequence data. This paper describes our approach to scheduling thousands of GARLI jobs with diverse requirements to heterogeneous grid resources, which include volunteer computers running BOINC software. A key component of this system provides a priori GARLI runtime estimates using machine learning with random forests.

Published in:

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on

Date of Conference:

16-20 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.