Cart (Loading....) | Create Account
Close category search window

Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel Architectures with DPLASMA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Bosilca, G. ; Innovative Comput. Lab., Univ. of Tennessee, Knoxville, TN, USA ; Bouteiller, A. ; Danalis, A. ; Faverge, M.
more authors

We present a method for developing dense linear algebra algorithms that seamlessly scales to thousands of cores. It can be done with our project called DPLASMA (Distributed PLASMA) that uses a novel generic distributed Direct Acyclic Graph Engine (DAGuE). The engine has been designed for high performance computing and thus it enables scaling of tile algorithms, originating in PLASMA, on large distributed memory systems. The underlying DAGuE framework has many appealing features when considering distributed-memory platforms with heterogeneous multicore nodes: DAG representation that is independent of the problem-size, automatic extraction of the communication from the dependencies, overlapping of communication and computation, task prioritization, and architecture-aware scheduling and management of tasks. The originality of this engine lies in its capacity to translate a sequential code with nested-loops into a concise and synthetic format which can then be interpreted and executed in a distributed environment. We present three common dense linear algebra algorithms from PLASMA (Parallel Linear Algebra for Scalable Multi-core Architectures), namely: Cholesky, LU, and QR factorizations, to investigate their data driven expression and execution in a distributed system. We demonstrate through experimental results on the Cray XT5 Kraken system that our DAG-based approach has the potential to achieve sizable fraction of peak performance which is characteristic of the state-of-the-art distributed numerical software on current and emerging architectures.

Published in:

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on

Date of Conference:

16-20 May 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.