By Topic

Parallel Processing Framework on a P2P System Using Map and Reduce Primitives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kyungyong Lee ; Dept. of ECE, Univ. of Florida, Gainesville, FL, USA ; Tae Woong Choi ; Ganguly, A. ; Wolinsky, D.I.
more authors

This paper presents a parallel processing framework for structured Peer-To-Peer (P2P) networks. A parallel processing task is expressed using Map and Reduce primitives inspired by functional programming models. The Map and Reduce tasks are distributed to a subset of nodes within a P2P network for execution by using a self-organizing multicast tree. The distribution latency cost of multicast method is O(log(N)), where N is a number of target nodes for task processing. Each node getting a task performs the Map task, and the task result is summarized and aggregated in a distributed fashion at each node of the multicast tree during the Reduce task. We have implemented this framework on the Brunet P2P system, and the system currently supports predefined Map and Reduce tasks or tasks inserted through Remote Procedure Call (RPC) invocations. A simulation result demonstrates the scalability and efficiency of our parallel processing framework. An experiment result on PlanetLab which performs a distributed K-Means clustering to gather statistics of connection latencies among P2P nodes shows the applicability of our system in applications such as monitoring overlay networks.

Published in:

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on

Date of Conference:

16-20 May 2011