By Topic

Rack Aware Scheduling in HPC Data Centers: An Energy Conservation Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patil, V.A. ; Dept. of Comput. Sci., State Univ. of New York at Buffalo, Buffalo, NY, USA ; Chaudhary, V.

Energy consumption in high performance computing data centers has become a long standing issue. With rising costs of operating the data center, various techniques need to be employed to reduce the overall energy consumption. Currently, among others there are techniques that guarantee reduced energy consumption by powering on/off the idle nodes. However, most of them do not consider the energy consumed by other components in a rack. Our study addresses this aspect of the data center. We show that we can gain considerable energy savings by reducing the energy consumed by these rack components. In this regard, we propose a scheduling technique that will help schedule jobs with the above mentioned goal. We claim that by our scheduling technique we can reduce the energy consumption considerably without affecting other performance metrics of a job. We implement this technique as an enhancement to the well known Maui scheduler and present our results. We compare our technique with various currently available Maui scheduler configurations. We simulate a wide variety of workloads from real cluster deployments using the simulation mode of Maui. Our results consistently show about 7 to 14% savings over the currently available Maui scheduler configurations. We shall also see that our technique can be applied in tandem with most of the existing energy aware scheduling techniques to achieve enhanced energy savings.

Published in:

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on

Date of Conference:

16-20 May 2011