By Topic

A Replacement Technique to Maximize Task Reuse in Reconfigurable Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Clemente, J.A. ; Dept. de Arquitectura de Comput. y Autom. (DACyA), Univ. Complutense de Madrid (UCM), Madrid, Spain ; Mozos, D. ; Resano, J.

Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external task-graph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-of- the-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.

Published in:

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium on

Date of Conference:

16-20 May 2011