By Topic

An Efficient Sensitivity Analysis Method for Large Cloud Simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mills, K. ; Inf. Technol. Lab., NIST, Gaithersburg, MD, USA ; Filliben, J. ; Dabrowski, C.

Simulations of large distributed systems, such as infrastructure clouds, usually entail a large space of parameters and responses that prove impractical to explore. To reduce the space of inputs, experimenters, guided by domain knowledge and ad hoc methods, typically select a subset of parameters and values to simulate. Similarly, experimenters typically use ad hoc methods to reduce the number of responses to analyze. Such ad hoc methods can result in experiment designs that miss significant parameter combinations and important responses, or that overweight selected parameters and responses. When this occurs, the experiment results and subsequent analyses can be misleading. In this paper, we apply an efficient sensitivity analysis method to demonstrate how relevant parameter combinations and behaviors can be identified for an infrastructure Cloud simulator that is intended to compare resource allocation algorithms. Researchers can use the techniques we demonstrate here to design experiments for large Cloud simulations, leading to improved quality in derived research results and findings.

Published in:

Cloud Computing (CLOUD), 2011 IEEE International Conference on

Date of Conference:

4-9 July 2011