By Topic

Scalable Complex Query Processing over Large Semantic Web Data Using Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Husain, M. ; Dept. of Comput. Sci., Univ. of Texas at Dallas, Richardson, TX, USA ; McGlothlin, J. ; Khan, L. ; Thuraisingham, Bhavani

Cloud computing solutions continue to grow increasingly popular both in research and in the commercial IT industry. With this popularity comes ever increasing challenges for the cloud computing service providers. Semantic web is another domain of rapid growth in both research and industry. RDF datasets are becoming increasingly large and complex and existing solutions do not scale adequately. In this paper, we will detail a scalable semantic web framework built using cloud computing technologies. We define solutions for generating and executing optimal query plans. We handle not only queries with Basic Graph Patterns (BGP) but also complex queries with optional blocks. We have devised a novel algorithm to handle these complex queries. Our algorithm minimizes binding triple patterns and joins between them by identifying common blocks by algorithms to find sub graph isomorphism and building a query plan utilizing that information. We utilize Hadoop's MapReduce framework to process our query plan. We will show that our framework is extremely scalable and efficiently answers complex queries.

Published in:

Cloud Computing (CLOUD), 2011 IEEE International Conference on

Date of Conference:

4-9 July 2011